Bacterial Human Virulence Genes across Diverse Habitats As Assessed by In silico Analysis of Environmental Metagenomes
نویسندگان
چکیده
The occurrence and distribution of clinically relevant bacterial virulence genes across natural (non-human) environments is not well understood. We aimed to investigate the occurrence of homologs to bacterial human virulence genes in a variety of ecological niches to better understand the role of natural environments in the evolution of bacterial virulence. Twenty four bacterial virulence genes were analyzed in 46 diverse environmental metagenomic datasets, representing various soils, seawater, freshwater, marine sediments, hot springs, the deep-sea, hypersaline mats, microbialites, gutless worms and glacial ice. Homologs to 16 bacterial human virulence genes, involved in urinary tract infections, gastrointestinal diseases, skin diseases, and wound and systemic infections, showed global ubiquity. A principal component analysis did not demonstrate clear trends across the metagenomes with respect to occurrence and frequency of observed gene homologs. Full-length (>95%) homologs of several virulence genes were identified, and translated sequences of the environmental and clinical genes were up to 50-100% identical. Furthermore, phylogenetic analyses indicated deep branching positions of some of the environmental gene homologs, suggesting that they represent ancient lineages in the phylogeny of the clinical genes. Fifteen virulence gene homologs were detected in metatranscriptomes, providing evidence of environmental expression. The ubiquitous presence and transcription of the virulence gene homologs in non-human environments point to an important ecological role of the genes for the activity and survival of environmental bacteria. Furthermore, the high degree of sequence conservation between several of the environmental and clinical genes suggests common ancestral origins.
منابع مشابه
Evolutionary Insight into the Functional Amyloids of the Pseudomonads
Functional bacterial amyloids (FuBA) are important components in many environmental biofilms where they provide structural integrity to the biofilm, mediate bacterial aggregation and may function as virulence factor by binding specifically to host cell molecules. A novel FuBA system, the Fap system, was previously characterized in the genus Pseudomonas, however, very little is known about the p...
متن کاملAntibiotic resistance profiles of Pseudomonas aeruginosa isolates containing virulence genes
Background: A most common opportunistic pathogen, Pseudomonas aeruginosa is present in both humans and animals and responsible for various nosocomial infections and healthcare settings related infections. Different virulence genes like; oprL (membrane lipoprotein L) and toxA (exotoxin A i.e. ETA) in P. aeruginosa, assist in its pathogenicity, toxicity and contribute to high antibiotic resistanc...
متن کاملIdentification of virulence genes in Pseudomonas aeruginosa isolated from human and animal samples by multiplex-PCR and their antibiotic resistance pattern
Background: Pseudomonas aeruginosa is a leading cause of Hospital-acquired infection worldwide. A major problem in the treatment of bacterial infections is the emergence of strains with multiple resistances (MDR). The aim of this study was to identify virulence genes lasB, toxA, algD, exos in Pseudomonas aeruginosa isolates from human and animal by Multiplex-PCR method and determination of anti...
متن کاملmGenomeSubtractor: a web-based tool for parallel in silico subtractive hybridization analysis of multiple bacterial genomes
mGenomeSubtractor performs an mpiBLAST-based comparison of reference bacterial genomes against multiple user-selected genomes for investigation of strain variable accessory regions. With parallel computing architecture, mGenomeSubtractor is able to run rapid BLAST searches of the segmented reference genome against multiple subject genomes at the DNA or amino acid level within a minute. In addit...
متن کاملComputational Bacterial Genome-Wide Analysis of Phylogenetic Profiles Reveals Potential Virulence Genes of Streptococcus agalactiae
The phylogenetic profile of a gene is a reflection of its evolutionary history and can be defined as the differential presence or absence of a gene in a set of reference genomes. It has been employed to facilitate the prediction of gene functions. However, the hypothesis that the application of this concept can also facilitate the discovery of bacterial virulence factors has not been fully exam...
متن کامل